【佳学基因检测】WITER:一种使用加权迭代回归建模背景突变计数来估计癌症驱动基因的强大方法
小孩得肿瘤查基因有用吗解释说明
研究肿瘤基因检测中的数据库比对与基因解码了解《Nucleic Acids Res》在. 2019 Sep 19;47(16):e96.发表了一篇题目为《WITER:一种使用加权迭代回归建模背景突变计数来估计癌症驱动基因的强大方法》肿瘤靶向药物治疗基因检测临床研究文章。该研究由Lin Jiang , Jingjing Zheng , Johnny S H Kwan , Sheng Dai , Cong Li , Mulin Jun Li , Bolan Yu , Ka F To , Pak C Sham , Yonghong Zhu , Miaoxin Li 等完成。这一基因检测领域的新奇性研究提代了大数据算法的改进,有望对率先应用者提高肿瘤、癌症的检测的正确率,增加靶向药物发现靶点。
癌症个性化药物选择临床研究内容关键词:
驱动突变,基因组鉴定,正确医疗,乘客基因,癌症共识基因,TCGA
肿瘤靶向治疗基因检测临床应用结果
癌细胞中驱动突变和基因的基因组鉴定对于正确医疗至关重要。由于难以对背景突变计数的分布进行建模,现有的统计方法通常不足以区分癌症驱动基因和乘客基因。在这里,我们提出了一种新颖的统计方法,加权迭代零截断负二项式回归(WITER,http://grass.cgs.hku.hk/limx/witer 或 KGGSeq,http://grass.cgs.hku.hk/ limx/kggseq/),用于检测显示过多体细胞突变的癌症驱动基因。通过适当地拟合背景突变计数的分布,这种方法即使在小样本或中等样本中也能很好地工作。与其他方法相比,它在大多数测试的癌症中检测到了更重要的癌症共识基因。应用这种方法,我们估计了 26 种不同类型癌症中的 229 个驱动基因。计算机验证证实 78% 的预测基因可能是已知的驱动因素,而许多其他基因很可能是相应癌症的新驱动因素。 WITER 的技术进步能够在小至 30 名受试者的 TCGA 数据集中检测驱动基因,并挽救更多在中等或小样本中被替代工具遗漏的基因。
肿瘤发生与反复转移国际数据库描述:
Genomic identification of driver mutations and genes in cancer cells are critical for precision medicine. Due to difficulty in modelling distribution of background mutation counts, existing statistical methods are often underpowered to discriminate cancer-driver genes from passenger genes. Here we propose a novel statistical approach, weighted iterative zero-truncated negative-binomial regression (WITER, http://grass.cgs.hku.hk/limx/witer or KGGSeq,http://grass.cgs.hku.hk/limx/kggseq/), to detect cancer-driver genes showing an excess of somatic mutations. By fitting the distribution of background mutation counts properly, this approach works well even in small or moderate samples. Compared to alternative methods, it detected more significant and cancer-consensus genes in most tested cancers. Applying this approach, we estimated 229 driver genes in 26 different types of cancers. In silico validation confirmed 78% of predicted genes as likely known drivers and many other genes as very likely new drivers for corresponding cancers. The technical advances of WITER enable the detection of driver genes in TCGA datasets as small as 30 subjects and rescue of more genes missed by alternative tools in moderate or small samples.
(责任编辑:佳学基因)